
Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico

• Introduction
• Raspberry Pi Pico
• Thonny Python Editor
• MicroPython
• Python Examples

– Blinking onboard LED
– Blinking external LED
– Pulse Width Modulation (PWM)
– Temperature Sensor (TMP36)

• Running Pico without a PC
• PicoZero (Short Introduction)

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

• In this Tutorial we are introducing
Raspberry Pi Pico
• Raspberry Pi Pico is a “downscaled”

version of the original Raspberry Pi and
is more comparable with Arduino
compared to the original Raspberry Pi
• You also need to use a downscaled

version of Python, called MicroPython

Introduction

• Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

• Raspberry Pi Pico has similar features as Arduino
devices

• Raspberry Pi Pico is typically used for Electronics
projects, IoT Applications, etc.

• You typically use MicroPython, which is a
downscaled version of Python, in order to program it

Raspberry Pi Pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

• Raspberry Pi Pico
• A Micro-USB cable
• A PC with Thonny Python Editor (or

another Python Editor)
• Breadboard
• Electronics Components like LED,

Resistors, Jumper wires, etc.

What do you need?

Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico

Table of Contents

We have 4 different types:
• Raspberry Pi Pico (original)
• Raspberry Pi Pico H - pre-soldered

header pins included
• Raspberry Pi Pico W – WiFi included
• Raspberry Pi Pico WH – WiFi and pre-

soldered header pins included

Raspberry Pi Pico

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

Raspberry Pi Pico Series
Raspberry Pi Pico (original)

Raspberry Pi Pico H

Raspberry Pi Pico W

WiFi Module and Antenna

Pre-soldered header pins included

Arduino vs. Raspberry Pi

Raspberry Pi Pico is a Microcontroller Unit (MCU)

Arduino Family Raspberry Pi
Arduino UNO

Arduino UNO and similar Arduino
boards is a Microcontroller Unit
(MCU)

Raspberry Pi
is a Single-Board Computer
(SBC), which is a
microcontroller unit with
CPU, RAM, and external
hard disk.

Raspberry Pi Pico
Programming Language: Arduino
IDE and C/C++

Programming Language: MicroPython or C/C++

Operating System: Linux
Programming Language:
Python + many others

• Size: 21 mm × 51 mm
• Micro-USB B port for power and data
• CPU: Dual-core Arm Cortex-M0+ @ 133MHz
• Memory: 264KB on-chip SRAM; 2MB onboard QSPI Flash
• Interface: 26 GPIO pins, including 3 Analog Inputs (ADC)
• Peripherals:

– 2 × UART
– 2 × SPI controllers
– 2 × I2C controllers
– 16 × PWM channels

Raspberry Pi Pico Specifications

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Thonny Python Editor

Table of Contents

• Thonny is a simple and user-friendly
Python Editor
• Cross-platform: Windows, macOS

and Linux
• Its free
• https://thonny.org

Thonny

https://thonny.org/

Thonny

Hans-Petter Halvorsen

https://www.halvorsen.blog

MicroPython

Table of Contents

• MicroPython is a downscaled version
of Python
• It is typically used for

Microcontrollers and constrained
systems

MicroPython

https://micropython.orghttps://docs.micropython.org/en/latest/index.html

https://micropython.org/
https://docs.micropython.org/en/latest/index.html

• The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico
• You can install the MicroPython

Firmware manually or you can use
the Thonny Editor

MicroPython Firmware

• Download the MicroPython UF2 File to your PC
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

• Push and hold the BOOTSEL button and plug your Pico
into the USB port of your PC. Release the BOOTSEL
button after your Pico is connected.

• It will mount as a Mass Storage Device called RPI-RP2.
• Drag and Drop the MicroPython UF2 File onto the RPI-

RP2 volume. Your Pico will reboot.
• You are now running MicroPython

Install MicroPython Firmware Manually

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

Install MicroPython Firmware using Thonny

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Install MicroPython Firmware using Thonny

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Examples

Table of Contents

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Communicate with the Pins

from machine import Pin

.. Your Code

import machine

.. Your Code

You need to use the machine library in order to communicate with the Pins on the Pico:

The machine library consists of several modules, if you only need the Pin module:

Communicate Pico Hardware
The machine Library within MicroPython has the following Classes/Modules:
• Pin – control I/O pins
• Signal – control and sense external I/O devices
• ADC – analog to digital conversion
• ADCBlock – control ADC peripherals
• PWM – pulse width modulation
• UART – duplex serial communication bus
• SPI – a Serial Peripheral Interface bus protocol (controller side)
• I2C – a two-wire serial protocol
• I2S – Inter-IC Sound bus protocol
• RTC – real time clock
• Timer – control hardware timers
• WDT – watchdog timer
• SD – secure digital memory card (cc3200 port only)
• SDCard – secure digital memory card https://docs.micropython.org/en/latest/index.html

https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

https://www.halvorsen.blog

Blinking onboard LED

Table of Contents

Turn on/off the onboard LED
import machine

pin = 25
led = machine.Pin(pin, machine.Pin.OUT)
led.value(1)

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

import machine

pin = 25
led = machine.Pin(pin, machine.Pin.OUT)
led.value(0)

Note! If you are using Raspberry Pi Pico
W instead of the original Raspberry Pi
Pico, you need to do as follows:
pin = "LED"
led = machine.Pin(pin, machine.Pin.OUT)
Because on the Raspberry Pi Pico W pin
25 is used for internal communication
with the WiFi chip.

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Toggle the onboard LED

import machine

pin = 25

led = machine.Pin(pin, machine.Pin.OUT)

led.toggle()

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Blink the onboard LED
import machine
import time

pin = 25

led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value(1)
time.sleep(2)
led.value(0)
time.sleep(2)

Blink the onboard LED v2
import machine

pin = 25

led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value(1)
machine.lightsleep(1000)
led.value(0)
machine.lightsleep(1000)

Blink the onboard LED v3
from machine import Pin, Timer

pin = 25
led = Pin(pin, Pin.OUT)
timer = Timer()

def blink(timer):
led.toggle()

timer.init(freq=1, mode=Timer.PERIODIC, callback=blink)

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Instead of a While Loop you
can use the Timer module to
set a timer that runs a function
at regular intervals.

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Hans-Petter Halvorsen

https://www.halvorsen.blog

Blinking external LED

Table of Contents

Pin 16

GND

Breadboard

LED

𝑅 = 270Ω

Why do you need a Resistor?
If the current becomes too large, the LED will be destroyed. To prevent
this to happen, we will use a Resistor to limit the amount of current in
the circuit.

A LED typically need a current like 20mA (can be found in the LED Datasheet).
We use Ohm’s Law:

𝑈 = 𝑅𝐼
Arduino gives 𝑈 = 5𝑉 and 𝐼 = 20𝑚𝐴. We then get:

𝑅 =
𝑈
𝐼

The Resistor needed will be 𝑅 = !"
#.#%&

= 250Ω. Resistors with R=250Ω is not so common, so
we can use the closest Resistors we have, e.g., 270Ω

What should be the size of the Resistor?

Resistor Colors and Size

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/Resistor Calculator:

You can also use
a Multimeter

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

Blinking LED
import machine
import time

pin = 16
led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value(1)
time.sleep(2)
led.value(0)
time.sleep(2)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Pulse Width
Modulation (PWM)

Table of Contents

Controlling LED Brightness using PWM
• We've seen how to turn an LED on and off, but how do

we control its brightness levels?
• An LED's brightness is determined by controlling the

amount of current flowing through it, but that requires a
lot more hardware components.

• A simple trick we can do is to flash the LED faster than
the eye can see!

• By controlling the amount of time, the LED is on versus
off, we can change its perceived brightness.

• This is known as Pulse Width Modulation (PWM).
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

Controlling LED Brightness using PWM

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c

Below we see how we can use PWM to control the brightness of a LED

PWM on Raspberry Pi Pico:
16 bit gives 2^16 = 65536 different levels, i.e., from 0 to 65535

https://docs.micropython.org/en/latest/library/machine.PWM.html

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c
https://docs.micropython.org/en/latest/library/machine.PWM.html

Pulse Width Modulation (PWM)

High(3.3v)

Low (0v)

High(3.3v)

Low (0v)

High(3.3v)

Low (0v)

50% 50%

10% 90%

90% 10% Average = 3.3v x 0.9 = 2.97v

Average = 3.3v x 0.5 = 1.65v

Average = 3.3v x 0.1 = 0.33v

PW
M

 E
xa

m
pl

e
from machine import Pin, PWM
from time import sleep

pin = 16
pwm = PWM(Pin(pin))
pwm.freq(1000)

N = 65535
for brightness in range(N):

pwm.duty_u16(brightness)
sleep(0.0001)

pwm.duty_u16(0) #Turn LED of when finished

PW
M

 E
xa

m
pl

e
v2 from machine import Pin, PWM

from time import sleep

pin = 16
pwm = PWM(Pin(pin))
pwm.freq(1000)

start = 0
step = 100
stop = 65535

for brightness in range(start, stop, step):
pwm.duty_u16(brightness)
sleep(0.01)

pwm.duty_u16(0)

Hans-Petter Halvorsen

https://www.halvorsen.blog

TMP36 Temperature
Sensor

Table of Contents

TMP36 Temperature Sensor
A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

https://learn.adafruit.com/tmp36-temperature-sensor

Analog Values with Pico

https://docs.micropython.org/en/latest/library/machine.ADC.html

https://pico.pinout.xyz

Raspberry Pi Pico has 3 Analog
Inputs (ADC)

ADC 0 – Pin 26
ADC 1 – Pin 27
ADC 2 – Pin 28

https://docs.micropython.org/en/latest/library/machine.ADC.html
https://pico.pinout.xyz/

TMP36 Wiring

https://pico.pinout.xyz

Pin 26

https://pico.pinout.xyz/

ADC Value to Voltage Value

ADC = 0 -> 0v
ADC = 65535 -> 3.3v

The read_u16() function gives a value between 0 and 65535. It must be converted to a
Voltage Signal 0 - 3.3v

3.3𝑉

0

𝑦(𝑥) = 𝑎𝑥 + 𝑏

0𝑉 1023

𝑦(𝑥) =
3.3

65535
𝑥

This gives the following conversion formula:

Analog Pins: The built-in Analog-to-Digital Converter (ADC) on Pico is 16bit, producing
values from 0 to 65535.

Voltage to degrees Celsius
Convert from Voltage (V) to degrees Celsius
From the Datasheet we have:

(𝑥', 𝑦') = (0.75𝑉, 25°𝐶)
(𝑥%, 𝑦%) = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦' =
𝑦% − 𝑦'
𝑥% − 𝑥'

(𝑥 − 𝑥')

This gives:

𝑦 − 25 =
50 − 25
1 − 0.75 (𝑥 − 0.75)

Then we get the following formula:
𝑦 = 100𝑥 − 50

Datasheet: https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35_36_37.pdf

https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35_36_37.pdf

TMP36 Example
from machine import ADC
from time import sleep

adcpin = 26
tmp36 = ADC(adcpin)

while True:
adc_value = tmp36.read_u16()
volt = (3.3/65535)*adc_value
degC = (100*volt)-50
print(round(degC, 1))
sleep(5)

TMP36 Example

Hans-Petter Halvorsen

https://www.halvorsen.blog

Running Pico
without PC

Table of Contents

Running Pico without PC

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

• If you want to run your Raspberry Pi Pico without it being
attached to a computer, you can use an external USB Micro
Power Supply (between 1.8V and 5.5V)

• To automatically run a MicroPython program, simply save it to
the device with the name main.py

• Save the main.py file on the Raspberry Pi
• Unplug the connection to your PC, then attach the USB Micro

Power Supply
• Then the main.py should automatically run when the Pico is

starting

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

Soft reboot command

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

• You can also click Ctrl + D in the Shell inside the Thonny Editor to
force a soft reboot command.

• In both cases the "main.py" program should start to run
automatically.

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

Hans-Petter Halvorsen

https://www.halvorsen.blog

PicoZero

Table of Contents

PicoZero
• The picozero Python Library is

intended to be a beginner-friendly
library for using common electronics
components with the Raspberry Pi
Pico

• It can be used instead of the
machine Library in many cases

• You install it like an ordinary Python
Library using “pip install picozero” or
from the “Manage Packages”
window in the Thonny editor

https://pypi.org/project/picozero/
https://picozero.readthedocs.io
https://github.com/RaspberryPiFoundation/picozero

https://pypi.org/project/picozero/
https://picozero.readthedocs.io/
https://github.com/RaspberryPiFoundation/picozero

LED Example
from picozero import LED
from time import sleep

pin = 16
led = LED(pin)

led.on()
sleep(1)
led.off()

LED Example v2
from picozero import LED
from time import sleep

pin = 16
led = LED(pin)

while True:
led.toggle()
sleep(1)

• Raspberry Pi Pico:
https://www.raspberrypi.com/products/raspberry-pi-pico/

• Raspberry Pi Foundation:
https://projects.raspberrypi.org/en/projects?hardware[]=pico

• Getting Started with Pico:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

• MicroPython:
https://docs.micropython.org/en/latest/index.html

Raspberry Pi Pico Resources

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

