https://www.halvorsen.blog |
% © F
w%*ﬁelfa” R, -
,A'é‘é\ﬁ °) “?\‘ o
,6‘6\'6‘ ° - B @Q@?\v‘
,e L)

,A

© . a%
'@@gg

Raspberry Pi Pico

Hans-Petter Halvorsen

Contents

Introduction
Raspberry Pi Pico
Thonny Python Editor
MicroPython

Python Examples

— Blinking onboard LED

— Blinking external LED

— Pulse Width Modulation (PWM)
— Temperature Sensor (TMP36)
Running Pico without a PC

PicoZero (Short Introduction)

https://www.halvorsen.blog c

Introduction

Hans-Petter Halvorsen Table of Contents

Introduction

* |In this Tutorial we are introducing
Raspberry Pi Pico

e Raspberry Pi Pico is a “downscaled”
version of the original Raspberry Pi and
IS more comparable with Arduino
compared to the original Raspberry Pi

 You also need to use a downscaled
version of Python, called MicroPython

Raspberry Pi Pico

e Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

* Raspberry Pi Pico has similar features as Arduino
devices

e Raspberry Pi Pico is typically used for Electronics
projects, loT Applications, etc.

* You typically use MicroPython, which is a

downscaled version of Python, in order to program it

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

What do you need?

e Raspberry Pi Pico
* A Micro-USB cable

A PC with Thonny Python Editor (or
another Python Editor)

* Breadboard

* Electronics Components like LED,
Resistors, Jumper wires, etc.

https://www.halvorsen.blog c

Raspberry Pi Pico

Hans-Petter Halvorsen Table of Contents

Raspberry Pi Pico

We have 4 different types:
* Raspberry Pi Pico (original)

* Raspberry Pi Pico H - pre-soldered
header pins included

* Raspberry Pi Pico W — WiFi included

* Raspberry Pi Pico WH — WiFi and pre-
soldered header pins included

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

Raspberry Pi Pico Series

Raspberry Pi Pico (original)

BOOTSEL ‘@ &

w i = =
,:. x

Pre-soldered header pins included

Arduino vs. Raspberry Pi

Arduino Family

Raspberry Pi

Raspberry Pi
Arduino UNO is a Single-Board Computer [
(SBC), whichis a .
microcontroller unit with
CPU, RAM, and external
hard disk.
Operating System: Linux
Programming Language:
Arduino UNO and similar Arduino python + many others
boards is a Microcontroller Unit
(MCU)

Raspberry Pi Pico

Programming Language: Arduino
IDE and C/C++

Raspberry Pi Pico is a Microcontroller Unit (MCU)
Programming Language: MicroPython or C/C++

Raspberry Pi Pico Specifications

* Size: 21 mm x 51 mm

* Micro-USB B port for power and data

 CPU: Dual-core Arm Cortex-M0O+ @ 133MHz

e Memory: 264KB on-chip SRAM; 2MB onboard QSPI Flash

* Interface: 26 GPIO pins, including 3 Analog Inputs (ADC)

* Peripherals:
— 2 x UART
— 2 x SPI controllers

— 2 x 12C controllers
— 16 x PWM channels

Pico Pinout

Power

Ground

UART / UART (default)
GPIO, PIO, and PWM
ADC

SPI / SPI (default)
12C / 12C (default)

Debugging

https://www.raspberrypi.com/products/raspberry-pi-pico/

[UARTOTX § 12COSDA | _SPIORX | GPO
L UARTO RX | 12C0 SCL § sPioCsn | GP1_
GND

[12C1 SDA § sPioscK | GP2_|

[12C1SCL J SPI0TX_§__GP3]
LUARTITX] 12C0 SDA | _SPIORX | GP4
LUARTI RX} 120 SCL_J _SPI0 CSn | GRS)

GND

[12C1 SDA § SPIOSCK | GP6_|

[12C1SCL } _sPioTX J _GP7 Rl

LUART1 TX § 12COSDA § _SPITRX | GP8 Rl
LUART1 RX J 12C0 SCL § SPI1CSn | GP9 RV
[__GND__ K

[12C1 SDA | SPITSCK §_GP10__ Rl

[12c1SCL |} sPi1TX_§GP11 R
[UARTOTX § 12C0SDA §_SPI1RX _J _GP12 QU
[UARTORX § 12c0 SCL § sPI1CSn | _GP13 _RiYJ
[__GND__ Rl

[12C1 SDA § SPI1SCK | GP14 _RilJ

[12C1sCL § sPi1TX_J _GP15 Rl

O e N o s W N

. Raspberry Pi Pico © 2020

[GZRER

,_
mQ
=]

..., BOOTSEL

ATOMS

anNo

L} vBUS |

£ vsys |

£ GND |

37

£ 3v3(our) |

35

78 GP28 | ADC2

<l GND | AGND |

f GP27] ADC1] 12C1 SCL |

I GP26] ADCO | 12C1 SDA |

30

i GP22 |
il GND |
27 I
26 I
Fi GP19f spioTX | 1201 SCL |
28 GP18 | SPI0 SCK J 12C1 SDA |
b<l GND |

22 12C0O SCL _§ UARTO RX
il GP16 |

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.halvorsen.blog c

Thonny Python Editor

Hans-Petter Halvorsen Table of Contents

Thonny

* Thonny is a simple and user-friendly
Python Editor

* Cross-platform: Windows, macOS
and Linux

* Its free
* https://thonny.org

https://thonny.org/

Thonny

T& Thonny - <untitled> @ 1:1

— [m] x
File Edit View Run Tools Help
DA O @ =
<untitled>
1
Shell

>>> print("Hello World")
Hello World

>>>

MicroPython (Raspberry Pi Pico) = COM&

https://www.halvorsen.blog c

MicroPython

Hans-Petter Halvorsen Table of Contents

MicroPython

* MicroPython is a downscaled version
of Python

* |t is typically used for
Microcontrollers and constrained
systems

https://docs.micropython.org/en/latest/index.html https://micropython.org

https://micropython.org/
https://docs.micropython.org/en/latest/index.html

MicroPython Firmware

* The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico

* You can install the MicroPython
Firmware manually or you can use
the Thonny Editor

Install MicroPython Firmware Manually
 Download the MicroPython UF2 File to your PC

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

* Push and hold the BOOTSEL button and plug your Pico
into the USB port of your PC. Release the BOOTSEL
button after your Pico is connected.

* It will mount as a Mass Storage Device called RPI-RP2.

* Drag and Drop the MicroPython UF2 File onto the RPI-
RP2 volume. Your Pico will reboot.

* You are now running MicroPython

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

Install MicroPython Firmware using Thonny

T& Thonny - <untitled> @ 1:1

File Edit View Run Tools Help

DEEH OF @™
<untitled>

1

Shell
Python 3.106.9 (C:\Users\hansha\AppData\Local\Programs\Thonny\pyth

V]

on.exe)

>>>

¥ Local Python 3 « Thonny's Python

Conjgure interpreter...

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

'ﬁ. Thonny options
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thonny use for running your code?
|MicroPython (Raspberry Pi Pico)

Details

Connect your device to the computer and select corresponding port below
(look for your device name, "USB Serial" or "UART").
If you can't find it, you may need to install proper USB driver first.

Port
|< Try to detect port automatically >

M Interrupt working program on connect
Synchronize device's real time clock

M Use local time in real time clock

[V Restart interpreter before running a script

=

Install or update MicroPython

: Cancel

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Install MicroPython Firmware using Thonny

T Thonny - <untitled> @ 1:1 - O
File Edit View Run Tools Help
DEE O% @™
<untitled> ‘ T Thonny options
1

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thonny use for running your code?
lMicroPython (Raspberry Pi Pico) v

Details

Connect your device to the comouter and select corresnondina port below. L

(look for your device name, T Install MicroPython X
If you can't find it, you may

Port Here you can install or update MicroPython for devices having an UF2 bootloader

< Try to detect port autom (this includes most boards meant for beginners).

1. Put your device into bootloader mode:

Interrupt working progra - some devices have to be plugged in while holding the BOOTSEL button,
Synchronize device's rea - some require double-tapping the RESET button with proper rythm.

2. Wait for couple of seconds until the target volume appears.

3. Select desired variant and version.

4. Click 'Install' and wait for some seconds until done.

5. Close the dialog and start programming!

Target volume [FIRGPR(H)

Use local time in real tim
Restart interpreter befor]

family RP2
Shell MicroPython variant lRaspberry Pi « Pico / Pico H v‘
Python 3 : A\ version [1.19.1 v]
5> info https://micropython.org/download/rp2-pico

Install Cancel

Local Python 3 « Thonny's Python

T& Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

DEZd O @ ™
<untitled>

1

Shell

>>> print("Hello World")
Hello World

>>>

MicroPython (Raspberry Pi Pico) « COM6

https://www.halvorsen.blog c

Python Examples

Hans-Petter Halvorsen Table of Contents

Pico Pinout

[CZRER

[UARTO TX § 12C0 SDA | _SPI1RX _J__GP12 QBT (i GRI9) sPi0TX | 12C1 SCL |

W Power | UARTO TX | 12C0SDA § SPIORX § GPO_ BB ey} VBUS |
B Ground [UARTORX | 120 SCL § SPIoCSn | GP1 §¥ o'l VsSysS |
I UART/ UART (default) 3 ele] GND |
Il GPIO, PIO, and PWM | 12C1SDA § sPIoSCK § GP2 QYN e o (X 37
W ~oc [12c1scL | spioTx | GP3 Qi e 2 erqm Y 3v3(0UT) |
B sPi/SPI (default) LUARTLTX] 12c0 sDA | sPIoRX IENGPA I lpe = o
 12C/12C (default) | UARTIRX§ 12C0SCL | SPiocsn § GP5 RVARPI® _° e/ey’8 GP28 § ADC2 |
(e - 33
B Debugging [12C1SDA § SPIOSCK | GP6 QIS ® L 32
LeciscL] seorx TcR7 Rile & o:quill 6P] Adco] 121 SDA
| UART1 TX § 12COSDA | SPITRX § GP8 Qillgp @ < L 30
OARTTRX] 2coscL [soncon b oo Ll e © o &GP |
[cND RElbie S = 23 I
[12c15DA | spiisck | Gpio 7@ e o ol GP21 |
[12c1scL § spiiTX B GP11 NEEee o &} GP20 |
[) L]
®]
[] L]
® L]
[] L

(=2
>
=
=
(<5}

0
Q.
w
o

o<

LUARTORX § 12COSCL J SPi1CSn § GP13_ RilJ 24 GP18 § SPI0SCK | 12CT SDA |
[__GND__ Rl &l GND |
[12C1 SDA § sPi1SCK | GP14 Rl el GPIZ) sPio Csn | 12C0 SCL | UARTORX
[12C1SCL § sPi1TX | GP15 Rl (ll GP16__J SPIORX] 12C0 SDA § UARTOTX

B
https://www.raspberrypi.com/products/raspberry-pi-pico/ C

https://www.raspberrypi.com/products/raspberry-pi-pico/

Communicate with the Pins

You need to use the machine library in order to communicate with the Pins on the Pico:

import machine
Your Code

The machine library consists of several modules, if you only need the Pin module:

from machine import Pin

Your Code

Communicate Pico Hardware

The machine Library within MicroPython has the following Classes/Modules:
* Pin - control I/O pins

* Signal — control and sense external I/O devices

 ADC - analog to digital conversion

 ADCBIlock — control ADC peripherals

e PWM - pulse width modulation

* UART —duplex serial communication bus

e SPI - a Serial Peripheral Interface bus protocol (controller side)
* |2C - a two-wire serial protocol

* |2S — Inter-IC Sound bus protocol

e RTC - real time clock

* Timer — control hardware timers

« WDT — watchdog timer

e SD —secure digital memory card (cc3200 port only)

* SDCard — secure digital memory card https://docs.micropython.org/en/latest/index.htm|

https://docs.micropython.org/en/latest/index.html

https://www.halvorsen.blog c

Blinking onboard LED

Hans-Petter Halvorsen Table of Contents

Turn on/off the onboard LED

//ﬁote! If you are using Raspberry Pi Pico<\\
W instead of the original Raspberry Pi

. . Pico, you need to do as follows:
1mport machine pin = "LED"

led = machine.Pin (pin, machine.Pin.OUT)
Because on the Raspberry Pi Pico W pin

25 is used for internal communication

pin = 25 _with the WiFi chip. /

led = machine.Pin(pin, machine.Pin.OUT)
led.value (1)

import machine LED ¥
pin = 25 Z
led = machine.Pin(pin, machine.Pin.OUT) S
led.value (0)

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Toggle the onboard LED

import machine
pin = 25

led

machine.Pin(pin, machine.Pin.OUT)

led. toggle ()

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

Blink the onboard LED

import machine
import time

pin = 25
led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value (1)
time.sleep(2)
led.value (0)
time.sleep(2)

Blink the onboard LED v2

import machine
pin = 25
led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value (1)
machine.lightsleep (1000)
led.value (0)
machine.lightsleep (1000)

Blink the onboard LED v3

from machine import Pin, Timer

pin = 25
led = Pin(pin, Pin.OUT)
timer = Timer ()

def blink (timer) :
led. toggle ()

Instead of a While Loop you
can use the Timer module to

set a timer that runs a function
at regular intervals.

timer.init (freq=1, mode=Timer.PERIODIC, callback=blink)

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/5

https://www.halvorsen.blog c

Blinking external LED

Hans-Petter Halvorsen Table of Contents

GND

W 00 N oG os W N -

B EEEEEEEEEEE
© © © N o g A~ W N =2 o

BOOTSEL

i Pico ©2020

‘ Raspberry P

¢

40
39
38
37

36
35

34]

3
2

31

30

29

28
27

26

25 1

24 1

23 D

22]

21]

Pin 16

fFghij

abcde

Breadboard

® © & o 0 & 0 0 0 o o L L . . L .
® & & o 0 0 " 0 0 00 . e o . . .
tED
~Nmewmon®a2E= ToeR22RRANSLARRRR
® © & o 0 o 0 0 0 0 0 ® & 0 U @ ® & 0 0 9 " 0 " " 0 0 0
® @ ° o o o o 0 0 0 0 ® ® 9 9 9 & 0 9 O " " P S " e e
® ® & o o & 0 0 0 * 0 ® ® 9 0 & 9 O 9 O O O " " O " e
® & & o o 0 0 0 0 00 W W W N N W W
Vo B e st ol i A ey ﬁ'll.-‘.............
R = 270Q
® & o o o 0 0 o o 0o o ® & & & 90 o & 9 O O O " " O " 00
® & & & 0 0 0 0 " 00 ® 9 9 9 9 0 % " " P S S P e
® & & o O o 0 o 0 * 0 ® & 0 0 0 0 0 0 O " 0 6 e e 0
® & & o 9 0 9 0 0 00 ® ® 9 0 9 9 0 9 " O " O " W O P O
® & & & 0 0 0 0 0 00 ® ® & 0 ° 9 O O " " " P S SO e e
rNmenoroa 2 reNLTVUEerR2RRANARERIAR
® & ¢ & o 0 0 0 0
e ® & o 0 o 0 0 0 L . L . . . L . L .

fFghiij

abcde

Why do you need a Resistor?

If the current becomes too large, the LED will be destroyed. To prevent

this to happen, we will use a Resistor to limit the amount of current in
the circuit.

What should be the size of the Resistor?

A LED typically need a current like 20mA (can be found in the LED Datasheet).
We use Ohm’s Law:

U = RI
Arduino gives U = 5V and I = 20mA. We then get:
U
R=—
I

The Resistor needed will be R = oV
0.024

= 2500 Resistors with R=250(is not so common, so

we can use the closest Resistors we have, e.g., 270}

Resistor Colors and Size

4-Band-Code

2%, 5%, 10% 560k Q +5%
E ,;i : m!l:u]i , : | /// /
N

15T BAND | 2"° BAND | 3%° BAND | MULTIPLIER | TOLERANCE

You can also use
a Multimeter

———— 1 [

0.1%, 0.25%, 0.5%, 1% 237Q +1%

5-Band-Code

H

Resistor Calculator: http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

Blinking LED

import machine
import time

pin = 16
led = machine.Pin(pin, machine.Pin.OUT)

while True:
led.value (1)
time.sleep(2)
led.value (0)
time.sleep (2)

https://www.halvorsen.blog c

Pulse Width
Modulation (PWM)

Hans-Petter Halvorsen Table of Contents

Controlling LED Brightness using PWM

* We've seen how to turn an LED on and off, but how do
we control its brightness levels?

 An LED's brightness is determined by controlling the
amount of current flowing through it, but that requires a
lot more hardware components.

 Asimple trick we can do is to flash the LED faster than
the eye can see!

* By controlling the amount of time, the LED is on versus
off, we can change its perceived brightness.

e This is known as Pulse Width Modulation (PWM).

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

Controlling LED Brightness using PWM

Below we see how we can use PWM to control the brightness of a LED

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c

PWM on Raspberry Pi Pico:
16 bit gives 2216 = 65536 different levels, i.e., from 0 to 65535

https://docs.micropython.org/en/latest/library/machine.PWM.html|

https://www.electronicwings.com/raspberry-pi/raspberry-pi-pwm-generation-using-python-and-c
https://docs.micropython.org/en/latest/library/machine.PWM.html

Pulse Width Modulation (PWM)

High(3.3v)
Low (Ov) J-I_l-l_l-l_lL

10% 90% Average =3.3vx 0.1 =0.33v
High(3.3v)
50% 50% Average = 3.3vx 0.5 =1.65v

High(3.3v) \O'
Low (Ov) _| u u u L -

90% 10% Average = 3.3vx 0.9 =2.97v

PWM Example

from machine import Pin, PWM
from time 1mport sleep

pin = 16
pwm = PWM(Pin (pin))
pwm. freq(1000)

N = 65535

for brightness in range (N) :
pwm.duty ulé (brightness)
sleep (0.0001)

pwm.duty ul6(0) #Turn LED of when finished

PWM Example v2

from machine import Pin, PWM
from time import sleep

pin = 16
pwm = PWM(Pin (pin))
pwm.freqg(1000)

start = 0
step = 100
stop = 65535

for brightness in range(start, stop, step):
pwm.duty ul6 (brightness)
sleep (0.01)

pwm.duty ul6 (0)

https://www.halvorsen.blog c

TMP36 Temperature
Sensor

Hans-Petter Halvorsen Table of Contents

TMP36 Temperature Sensor

A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

2.7-5.5V in ¢ Ground

Analog voltage out
https://learn.adafruit.com/tmp36-temperature-sensor

https://learn.adafruit.com/tmp36-temperature-sensor

| po

| ep1

I Ground
| ep2

| p3

| pa

| ps

I Ground
| cpe

| ep7

| cps

| Gpo

I Ground
| p10

| Gp11

| gp12

| P13

I Ground
| P14

| P15

19
20

Analog Values with Pico

veus |
VSYS |
Ground I
3V2-EN

3V3(0UT)

Ground
GP27
GP26
RUN
GP22

l
I
GP28 |
I
l
[

Ground
GP21
GP20
GP19
GP18
Ground
GP17
GP16

Raspberry Pi Pico has 3 Analog
Inputs (ADC)

ADC_VREF |

ERE2 : ADC 0 — Pin 26
AGround .
— ADC 1 - Pin 27
ADCO | ADC 2 —Pin 28

https://pico.pinout.xyz

https://docs.micropython.org/en/latest/library/machine.ADC.html

https://docs.micropython.org/en/latest/library/machine.ADC.html
https://pico.pinout.xyz/

| po

| ep1

I Ground
| ep2

| p3

| pa

| ps

I Ground
| cpe

| ep7

| cps

| Gpo

I Ground
| p10

| Gp11

| gp12

| P13

I Ground
| P14

| P15

19
20

TMP36 Wiring

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

VBUS
VSYS
Ground
3V3_EN
3V3(0UT)

GP28
Ground
GP27
GP26
RUN
GP22
Ground
GP21
GP20
GP19
GP18
Ground
GP17
GP16

|

| Apc_vrer |
| Apc2

I AGround
| Apci

| Apco

2.7-5.5V in

Analog voltage out

| -
| https://pico.pinout.xyz

Ground

https://pico.pinout.xyz/

ADC Value to Voltage Value

Analog Pins: The built-in Analog-to-Digital Converter (ADC) on Pico is 16bit, producing
values from 0 to 65535.

The read ulé6 () function gives a value between 0 and 65535. It must be converted to a
Voltage Signal 0 - 3.3v

ADC=0->0v
ADC = 65535 -> 3.3v

3.3V 1 This gives the following conversion formula:
(x) +b (x) = 3.3
X) = ax —
0 ’ Y 65535

1023

Voltage to degrees Celsius

a. TMP35

2.0

18 Tmpsr Convert from Voltage (V) to degrees Celsius
1.6 *Vs =3V /\‘° .

ia P From the Datasheet we have:

1:2 / /\\b y

(Xl,yl) = (075V,ZSOC)
(eryZ) = (1V7500C)

1.0

OUTPUT VOLTAGE (V)

: 7 LA
A 1

0.2 ,//// There is a linear relationship between

e o e Voltage and degrees Celsius:

TEMPERATURE (°C) —_—
This gives: y=ax+b
y — 25 = 50 — 25 (x — 0.75) We can find a and b using the following
1—-0.75 known formula:
Then we get the following formula: Y=y, = Yo — V1 (x —x1)
y=100x—50 T '

Datasheet: https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35 36 37.pdf

https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35_36_37.pdf

TMP36 Example

from machine i1mport ADC
from time 1mport sleep

adcpin = 26
tmp36 = ADC (adcpin)

while True:
adc value = tmp36.read ulé6()
volt = (3.3/65535) *adc value
degC = (100*volt) -50
print (round (degC, 1))
sleep (9)

T& Thonny - C:\Users\hansha\OneDrive\Documents\Industrial IT and Automation\loT\Raspberry Pi Pico\Code Examples\tmp36.py @ 4:12
File Edit View Run Tools Help

D& [b] @™

tmp36.py

=

from machine import ADC
from time import sleep

adcpin = 26|
tmp36 = ADC(adcpin)

while True:
adc_value

OWooO~NOTUVTAE, WN

tmp36.read_ulé()

R
= ®

volt (3.3/65535)*adc_value

R R
B wN

degC (1e0*volt)-50
print(round(degC, 1))

(Y
U
n

R
N O

sleep(5)

Shell
>>> %Run -c $EDITOR

258
258
27.
30.
28.

26.
26.

~] MW o

v

MicroPython (Raspberry Pi Pico) « COM6

https://www.halvorsen.blog c

Running Pico
without PC

Hans-Petter Halvorsen Table of Contents

Running Pico without PC

If you want to run your Raspberry Pi Pico without it being

attached to a computer, you can use an external USB Micro

Power Supply (between 1.8V and 5.5V)

To automatically run a MicroPython program, simply save it to

the device with the name main.py

Save the main.py file on the Raspberry Pi

Unplug the connection to your PC, then attach the USB Micro

Power Supply

Then the main.py should automatically run when the Pico is

starting
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

Soft reboot command

You can also click Ctrl + D in the Shell inside the Thonny Editor to
force a soft reboot command.

In both cases the "main.py" program should start to run
automatically.

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/9

https://www.halvorsen.blog c

PicoZero

Hans-Petter Halvorsen Table of Contents

PicoZero

T& Manage packages for Raspberry Pi Pico @ COM6

The picozero Python Library is
intended to be a beginner-friendly
library for using common electronics
components with the Raspberry Pi
Pico

It can be used instead of the
machine Library in many cases

You install it like an ordinary Python
Library using “pip install picozero” or
from the “Manage Packages”
window in the Thonny editor

https://pypi.org/project/picozero/

https://picozero.readthedocs.io

’picozero

Search on PyPI

<INSTALL>

picozero

Latest stable version: 0.4.1

Summary: A beginner-friendly library for using common electronics components with the
Raspberry Pi Pico.

Author: Raspberry Pi Foundation

Homepage: https://github.com/RaspberryPiFoundation/picozero

|PyPI page: https://pypi.org/project/picozero

Install Close

https://github.com/RaspberryPiFoundation/picozero

https://pypi.org/project/picozero/
https://picozero.readthedocs.io/
https://github.com/RaspberryPiFoundation/picozero

LED Example

from picozero import LED
from time 1mport sleep

pin = 16
led = LED (pin)

led.on ()
sleep (1)
led.off ()

LED Example v2

from picozero 1mport LED
from time 1mport sleep

pin = 16
led = LED (pin)

while True:

led.toggle ()
sleep (1)

Raspberry Pi Pico Resources
* Raspberry Pi Pico:

https://www.raspberrypi.com/products/raspberry-pi-pico/

* Raspberry Pi Foundation:

https://projects.raspberrypi.org/en/projects?hardware[]=pico

e Getting Started with Pico:

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

* MicroPython:

https://docs.micropython.org/en/latest/index.html

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway

WWW.uUusn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

